• 文献标题:   Fluorine-functionalized reduced graphene oxide-TiO2 nanocomposites: A new application approach for efficient photocatalytic disinfection and algicidal effect
  • 文献类型:   Article
  • 作  者:   JEONG E, JUNG SK, SHIN HS
  • 作者关键词:   antibacterial, algicidal, escherichia coli, reduced fluorinated graphene oxide rfgo, tio2
  • 出版物名称:   ENVIRONMENTAL POLLUTION
  • ISSN:   0269-7491 EI 1873-6424
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.envpol.2022.120974 EA DEC 2022
  • 出版年:   2023

▎ 摘  要

Using surface functionalization and related applications to 2D materials as innovative solutions to environmental pollution has gained considerable attention among researchers. Fluorinated graphene has derivative-based synergistic components with high thermal and chemical stability because of its structure and bonding. Fluorine-functionalized reduced graphene oxide (rFGO-TiO2) demonstrated enhanced hydrophilicity and wettability, highly efficient photocatalytic disinfection, and an algicidal effect. This study presents the hydro-thermal synthesis of rFGO-TiO2 to realize antibacterial properties with high stability, which was conducted against the gram-negative bacteria Escherichia coli. To optimize antibacterial performance, the effects of multiple synthetic conditions were investigated. The antibacterial performance was optimized at an rFGO content of 1 wt %, hydrothermal temperature of 200 degrees C, and hydrothermal time of 1 h. The rFGO-TiO2 composite demonstrated an antibacterial efficiency of 5.76 log under ultraviolet A irradiation for 10 min and around 2 log under visible light. In the absence of light, rFGO-TiO2 took 6 h to reach an antibacterial efficiency of 6 log. Increasing the rFGO content and hydrothermal temperature beyond the optimal conditions reduced the antibacterial efficiency because of the excess rFGO and disruption of rFGO-TiO2 binding. Measurements with electron spin resonance spectroscopy confirmed that hydroxyl radicals and superoxide ions caused stress and damaged the membrane of a cell, which led to cell death.