▎ 摘 要
PurposeThis study aimed to explore the antimicrobial properties of graphene coated Ti-6Al-4V to oral pathogens. Materials and methodsGraphene directly synthesized on Ti-6Al-4V alloy was characterized by scanning electron microscopy (SEM) and Raman spectroscopy. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, live/dead fluorescent staining and SEM were used to analyze the antimicrobial properties of graphene coated Ti-6Al-4V alloy to Porphyromonas gingivalis (P. gingivalis), Fusobacterium nucleatum (F. nucleatum), and Candida albicans (C. albicans). Reactive oxygen species (ROS) generation was monitored to reveal the antimicrobial mechanism. ResultsGraphene coated Ti-6Al-4V alloy caused a significant reduction in the presence of both bacterial and fungal pathogens as compared to uncoated Ti-6Al-4V alloy. P. gingivalis, F. nucleatum, and C. albicans on graphene coated Ti-6Al-4V alloy were less active than on uncoated Ti-6Al-4V alloy, and tended to become shrunk and deformed. Meanwhile, graphene coated Ti-6Al-4V alloy induced more generation of ROS in the pathogens than uncoated Ti-6Al-4V alloy. ConclusionsGraphene coated Ti-6Al-4V alloy exhibited antimicrobial properties against oral pathogens, the induction of oxidative stress might be involved in its antimicrobial mechanisms.