▎ 摘 要
Graphene's optical absorption coefficient increases linearly with the number of layers making it more effective in the construction of optical tuning graphene-based devices. Refractive index (RI) is one of the important optical parameters of the graphene for accurately describing its optical characteristics and further applications. In view of the RI research of the multilayer graphene is lacking and existing measurement methods are complicated. Optical power tuning RI of multilayer graphene is investigated using a simple measurement and no temperature cross sensitivity all optical fiber sensing structure. Optical power tuning RI characteristics of multilayer graphene are studied by tuning the introducing broad band light power from 0.57 mW to 22.7 mW. Different thickness graphene coating shows different tuning efficiency. At 4.86-mu m thickness, a 3.433-nm Bragg wavelength shift is obtained with 156.2-pm/mW wavelength versus optical power tuning sensitivity corresponding to 3.25x10(3) RI change and 0.154 URI/W (URI, unit of RI) RI optical power tuning efficiency.