▎ 摘 要
We perform computational molecular modeling of graphene/graphene oxide (G/GO) and polyvinylidene fluoride (PVDF) ferroelectric polymer composite nanostructures, using semi-empirical quantum approximation PM3 in HyperChem. Piezoelectric properties of these nanostructures are analyzed in comparison with experimental data obtained for poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)-GO thin films. Modeling shows qualitative agreement of properties and lowering of piezoelectric coefficient d(33eff) values under influence of G/GO layers. Modeling of GO-methane-hydrates nanostructures based on hexagonal ice model shows that after relaxation the system keeps a stable deformed state. This can serve for gas-hydrates storage and separation. Modeled composites could be used as multifunctional molecular units.