• 文献标题:   Grand canonical Monte Carlo simulations of methane adsorption in fullerene pillared graphene nanocomposites
  • 文献类型:   Article
  • 作  者:   BAYKASOGLU C, MERT H, DENIZ CU
  • 作者关键词:   porous carbon, adsorption, methane, doping, gcmc
  • 出版物名称:   JOURNAL OF MOLECULAR GRAPHICS MODELLING
  • ISSN:   1093-3263 EI 1873-4243
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.jmgm.2021.107909 EA APR 2021
  • 出版年:   2021

▎ 摘  要

The objective of this study is to investigate the methane adsorption performance of fullerene pillared graphene nanocomposites (FPGNs) with adjustable micro and meso porous morphology and high surface/weight ratios. Different types of fullerenes are considered as pillar units to adjust the porosity of FPGNs. The gravimetric, volumetric and deliverable methane storage capacities of FPGNs are examined using grand canonical Monte Carlo (GCMC) simulations. The lithium doping strategy is also employed to further improve the methane adsorption performance of FPGNs. GCMC simulations revealed that FPGNs have promising potential for methane storage applications with the appropriate selection of design parameters. In particular, the simulation results demonstrated that the gravimetric absolute methane uptake of FPGNs could reach 12.5 mmol/g at 298 K and 40 bars and, this value could be increased up to 19.7 mmol/g with appropriate doping ratio under the same conditions. (c) 2021 Elsevier Inc. All rights reserved.