▎ 摘 要
In this study, fabrication of manganese-incorporated iron oxide-graphene nanocomposite (rGO-FMBO) was reported for the efficient activation of CaO2 and generation of reactive radicals for the degradation of sulfamethoxazole (SMX). The effects of different systems, catalyst dosage, oxidant dosage, different pH and different reaction time on the degradation of SMX by rGO-APTMS-FMBO/CaO2 as well as the production of free radicals were also studied. Electron paramagnetic resonance (EPR) technique was used to detect and identify the radical species in this oxidation system and these radicals were further confirmed by scavenging studies with the addition of isopropanol (IPA) and methyl viologen (MV2+). The results indicated that the CaO2 could be activated by rGO-APTMS-FMBO efficiently for the effective degradation of SMX at neutral pH (P