• 文献标题:   Lithium titanate nanoplates embedded with graphene quantum dots as electrode materials for high-rate lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   ZHAO Y, XU SW, ZHOU KX, TIAN T, YANG Z, SU YJ, WANG Y, ZHANG YF, HU NT
  • 作者关键词:   graphene quantum dot, lithium titanate, high rate, capability, lithiumion battery
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1088/1361-6528/ac264b
  • 出版年:   2021

▎ 摘  要

Anode materials based on lithium titanate (LTO)/graphene composites are considered as ideal candidates for high-rate lithium-ion batteries (LIBs). Considering the blocking effects of graphene nanosheets in electrodes during ion-transfer processes, construction of LTO/graphene composite structures with enhanced electrical and ionic conductivity via facile and scalable techniques is still challenging for high-rate LIB. In this work, structures of anode materials based on LTO nanoplates embedded with graphene quantum dots (GQDs) are demonstrated for high-rate LIB. The hybrids can be facilely prepared via in situ introduction of GQDs during the process LTO preparation, which enables a uniform dispersion of GQDs within LTO. This method is convenient, rapid, and can be easily scaled-up. The introduction of 0.05 wt.% GQDs can greatly enhance the electrochemical performance of the electrodes. The electrodes with 0.05 wt.% GQDs deliver a specific discharge capacity of 185, 181 and 179 mAh g(-1) at 5, 10, and 20 C, respectively. The performance enhancement is suggested to be due to the synergistic interactions between LTO and GQDs. The strategy as well as as-designed structures of LTO/GQDs show potentials for application as high-rate anode materials in LIBs application.