▎ 摘 要
Nanocomposites of graphene nanosheets and poly(diphenylamine) (graphene PDPA) were synthesized via the in-situ oxidative polymerization of diphenylamine in a sulphuric acid medium. First, graphite oxide (GO) was prepared by oxidation of natural graphite using the modified Hummer's method and subsequently reduced using hydrazine monohydrate. The as-prepared graphene sheets were noncovalently grafted with PDPA using ammonium peroxydisulphate as an oxidant. During the polymerization, graphene sheets were homogeneously dispersed in the PDPA matrix. The formation of the hybrid material was confirmed by FTIR, XPS, TGA, HRTEM, FESEM and XRD measurements. XPS analysis revealed the removal of oxygen functionality from the GO surface after reduction and the bonding structure of the reduced hybrids. In addition, the nanocomposites showed better thermal properties due to the intrinsic property of the graphene sheets.