▎ 摘 要
Graphene-based fibers (GBFs) are macroscopic 1D assemblies formed by using microscopic 2D graphene sheets as building blocks. Their unique structure exhibits the same merits as graphene such as low weight, high specific surface area, excellent mechanical/electrical properties, and ease of functionalization. Furthermore, the fibrous nature of GBFs is intrinsically compatible with existing textile technologies, making them suitable for applications in flexible and wearable electronics. Recently, novel synthetic methods have endowed GBFs with new structures and functions, further improving their mechanical and electrical properties. These improvements have rapidly bridged the gaps between laboratory demonstrations and real-life applications in fiber-shaped batteries, supercapacitors, and electrochemical sensors. Recent advances in the fabrication, optimization, and application of GBFs are systematically reviewed and a perspective on their future development is given.