• 文献标题:   Reconfiguring graphene to achieve intrinsic negative Poisson's ratio and strain-tunable bandgap
  • 文献类型:   Article
  • 作  者:   WANG SW, YAO Y, PENG ZL, ZHANG B, CHEN SH
  • 作者关键词:   phgraphene, structural stability, dirac cone, semimetal, auxetic effect
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1088/1361-6528/ac1220
  • 出版年:   2021

▎ 摘  要

A new two-dimensional carbon-based material consisting of pentagonal and hexagonal elements is identified by numerical experiments, which is called phgraphene and possesses not only a tunable semimetallic feature but also a direction-dependent even sign-changed Poisson's ratio. The structural stability of such a new material is first checked systematically. It is found that phgraphene has a similar energy as the gamma-graphyne, a thermally stable structure from the room temperature to 1500 K, and elastic constants satisfying the Born-Huang criterion. Both the band structure and density of states are further verified with different techniques, which demonstrate a Dirac semimetallic characteristic of phgraphene. A more interesting finding is that the band structure can be easily tuned by an external loading, resulting in the transition from semimetal to semiconductor or from type I to type III. As a new material that may be applied in the future, the mechanical property of phgraphene is further evaluated. It shows that phgraphene is a typically anisotropic material, which has not only direction-dependent Young's moduli but also direction-dependent even sign-changed Poisson's ratios. The microscopic mechanisms of both the electrical and mechanical properties are revealed. Such a versatile material with tunable band structure and auxetic effect should have promising applications in the advanced nano-electronic field in the future.