▎ 摘 要
We develop a topological continuum framework to compute the formation energies of Stone-Wales defects in graphene and carbon nanotubes. Our approach makes no a priori assumptions about the analytical form of the dislocation strain fields while explicitly accounting for boundary conditions and defect-defect interactions. The continuum formalism reproduces trends observed in the atomistic simulations remarkably well and demonstrates the necessity of considering long-ranged effects to accurately describe defect energetics in graphene-based systems.