▎ 摘 要
We investigate the magnetic response of a spin interface constituted by MnPc molecules adsorbed on graphene/Co and its robustness against thermal fluctuations by x-ray magnetic circular dichroism. Element-selective hysteresis loops reveal a remarkable antiferromagnetic coupling between MnPc and Co that is strong both in perpendicular and in-plane magnetic orientations, thanks to the magnetic anisotropy properties and electronic configuration of MnPc. The magnetic interaction between MnPc and Co is mediated by the molecular states and the graphene pi orbitals in a superexchange mechanism that allows a strong exchange coupling while the molecular orbitals symmetries are preserved by the graphene decoupling layer. Our results show that the strength and stability of the magnetic coupling between MnPc molecules and Co layer(s), intercalated at the graphene/Ir(111) interface, is further optimized by the open 3d shell of the central Mn ion. The magnetic properties are compared with analogous molecular spin interfaces with high thermal stability, paradigmatic examples to exploit in surface-supported molecular spin electronics.