▎ 摘 要
Two-layer freestanding heterostructure consisting of VS2 monolayer and graphene was investigated by means of density functional theory computations as a promising anode material for lithium-ion batteries (LIB). We have investigated lithium atoms sorption and diffusion on the surface and in the interface layer of VS2/graphene heterostructure with both H and T configurations of VS2 monolayer. The theoretically predicted capacity of VS2/graphene heterostructures is high (569 mAh/g), and the diffusion barriers are considerably lower for the heterostructures than for bulk VS2, so that they are comparable to barriers in graphitic LIB anodes (similar to 0.2 eV). Our results suggest that VS2/graphene heterostructures can be used as a promising anode material for lithium-ion batteries with high power density and fast charge/discharge rates.