▎ 摘 要
Nanocomposites formed by poly(diallyldimethylammonium chloride) (PDDA, shown as P)-functionalized reduced graphene oxide (RGO) and borocarbonitride (BC6N, shown as BCN for simplicity) sheets with layers of negatively charged MoS2 and MoSe2 have been synthesized by a solution process. The nanocomposites exhibit superior photocatalytic hydrogen evolution reaction (HER) activity compared to the individual components, with the value increasing with the MoS2/MoSe2 content. The highest photocatalytic HER activity obtained is 11230 mu mol h(-1) g(-1) in the nanocomposite P.RGO-MoS2, with a P.RGO-MoS2 ratio of 1:5. The P.RGO-MoSe2 (1:5) and P.BCN-MoS2 (1:5) nanocomposites exhibit somewhat lower activities of 9540 and 8593 mu mol h(-1) g(-1), respectively. Prompted by literature reports that carbon-rich BCNs are efficient HER electrocatalysts, we have examined the electrocatalytic HER activity of P.BCN-MoS2 (1:1, 1:5, and 1:7) nanocomposites. The electrocatalytic HER activity of P.BCN-MoS2 (1:5) is found to be extraordinary, with an onset potential of -50 mV (vs RHE), comparable to that of platinum.