• 文献标题:   Synergistic formation of samarium oxide/graphene nanocomposite: A functional electrocatalyst for carbendazim detection
  • 文献类型:   Article
  • 作  者:   PRIYA TS, NATARAJ N, CHEN TW, CHEN SM, KOKULNATHAN T
  • 作者关键词:   rareearth metal oxide, carboneous material, agricultural compound, benzimidazole fungicide
  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1016/j.chemosphere.2022.135711 EA JUL 2022
  • 出版年:   2022

▎ 摘  要

Herein, an electrochemical sensor based on samarium oxide anchored, reduced graphene oxide (Sm2O3/RGO) nanocomposite was developed for the rapid detection of carbendazim (CBZ). Different characterization methods were infused to deeply examine the morphology, composition, and elemental state of Sm2O3/RGO nano -composite. The Sm2O3/RGO modified electrode exhibits an excellent electro-catalytic performance toward CBZ detection with a peak potential of +1.04 V in phosphate buffer solution (pH 3.0), which is superior to the RGO-, Sm2O3- and bare- electrodes. This remarkable activity can be credited to the synergetic effect generated by the robust interaction between Sm2O3 and RGO, resulting in a well-enhanced electrochemical sensing ability. Impressively, the fabricated sensor shows improved electrochemical performance in terms of the wide working range, detection limit, and strong sensitivity. On a peculiar note, the electrochemical sensing performances of CBZ detection based on Sm2O3/RGO nanocomposite demonstrate an extraordinary behavior compared to the prior documented electro-catalyst. In addition, the fabricated Sm2O3/RGO sensor also displays good operational stability, reproducibility, and repeatability towards the detection of CBZ. Furthermore, it was successfully applied to the CBZ detection in food and environmental water samples with satisfactory recovery. In accordance with our research findings, the Sm2O3/RGO nanocomposite could be used as an electro-active material for effectual electrochemical sensing of food and environmental pollutants.