▎ 摘 要
We report in situ 'direct' grafting of dendritic macromolecular wedges to the edges of 'pristine' graphite. Because of the three-dimensional molecular architectures, the solubility of dendritic macromolecules is profoundly improved compared with that of their linear analogues. As a result, the resultant macromolecular wedge grafted graphite disperses well in common solvents. On the basis of results from wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), HPEK is selectively grafted at the edges of graphite. For the efficient delamination of graphite into graphene and graphene-like platelets, the dendritic macromolecules with numerous polar periphery groups not only acts as macromolecular wedges but provides chemical affinity to solvents.