▎ 摘 要
An efficient computational methodology is used to explore charge transport properties in chemically modified (and randomly disordered) graphene-based materials. The Hamiltonians of various complex forms of graphene are constructed using tight-binding models enriched by first-principles calculations. These atomistic models are further implemented into a real-space order-N Kubo-Greenwood approach, giving access to the main transport length scales (mean free paths, localization lengths) as a function of defect density and charge carrier energy. An extensive investigation is performed for epoxide impurities with specific discussions on both the existence of a minimum semiclassical conductivity and a crossover between weak to strong localization regime. The 2D generalization of the Thouless relationship linking transport length scales is here illustrated based on a realistic disorder model.