• 文献标题:   Superior Micro-Supercapacitors Based on Graphene Quantum Dots
  • 文献类型:   Article
  • 作  者:   LIU WW, FENG YQ, YAN XB, CHEN JT, XUE QJ
  • 作者关键词:   graphene quantum dot, mno2, microsupercapacitor, asymmetric supercapacitor, rate capability
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   336
  • DOI:   10.1002/adfm.201203771
  • 出版年:   2013

▎ 摘  要

Graphene quantum dots (GQDs) have attracted tremendous research interest due to the unique properties associated with both graphene and quantum dots. Here, a new application of GQDs as ideal electrode materials for supercapacitors is reported. To this end, a GQDs//GQDs symmetric micro-supercapacitor is prepared using a simple electro-deposition approach, and its electrochemical properties in aqueous electrolyte and ionic liquid electrolyte are systematically investigated. The results show that the as-made GQDs micro-supercapacitor has superior rate capability up to 1000 V s(-1), excellent power response with very short relaxation time constant ((0) = 103.6 s in aqueous electrolyte and (0) = 53.8 s in ionic liquid electrolyte), and excellent cycle stability. Additionally, another GQDs//MnO2 asymmetric supercapacitor is also built using MnO2 nanoneedles as the positive electrode and GQDs as the negative electrode in aqueous electrolyte. Its specific capacitance and energy density are both two times higher than those of GQDs//GQDs symmetric micro-supercapacitor in the same electrolyte. The results presented here may pave the way for a new promising application of GQDs in micropower suppliers and microenergy storage devices.