▎ 摘 要
The electrode composites composed of conductive polypyrrole and graphene for electrochemical capacitors have attracted extensive attention due to their potential application. Here a green synthesis method was used to fabricate hierarchical nanostructured polypyrrole/graphene composites by using vitamin C as a reducing agent. The as-prepared nanocomposites were characterized by FTIR, Raman, XRD, TGA, SEM and TEM techniques. The results showed that the polypyrrole chains in the PPy/rGO-CTAB composite successfully inserted into the two-dimensional space of graphene layers. In addition, the electrochemical performances of composites were measured with cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) experiments. The results indicated that PPy/rGO-CTAB composites possessed better thermal stability, higher specific capacitance, lower resistance, relatively better cyclic properties and faster response to oxidation/reduction than both PPy/rGO composites without addition of CTAB and rGO.