▎ 摘 要
Recent global military events, such as the conflict in Syria, have emphasized the need to find effective strategies to rapidly destroy organophosphorus-based nerve agents. In this work, we designed active site-engineered graphene oxide (GO) via polymerization (polymer bead-GOs) as organophosphorus hydrolase (OPH) mimetic hotspots for the rapid degradation of nerve agents. This hybrid catalyst has a high total turnover frequency value of 0.65 s(-1) and good stability (94.8% activity maintained after 5 cycles). Mechanism investigations suggested that the high catalytic performance could be attributed to the synergistic effect among the clusters of imidazole and the presence of - COOH groups on the GO surface and Zn2+.