• 文献标题:   Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate
  • 文献类型:   Article
  • 作  者:   ZHANG ZH, XU XZ, QIAO RX, LIU JJ, FENG YX, ZHANG ZB, SONG PZ, WU MH, ZHU L, YANG XL, GAO P, LIU L, XIONG J, WANG EG, LIU KH
  • 作者关键词:   singlecrystal metal film, graphene, cu 111 substrate, interfacial interaction, meter scale
  • 出版物名称:   NANO RESEARCH
  • ISSN:   1998-0124 EI 1998-0000
  • 通讯作者地址:   Peking Univ
  • 被引频次:   1
  • DOI:   10.1007/s12274-019-2503-8
  • 出版年:   2019

▎ 摘  要

The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance, in which thin metal film is one heart material as conductive electrodes. However, conventional metal films are typically polycrystalline with random domain orientations and various grain boundaries, which greatly degrade their mechanical, thermal and electrical properties. Hence, it is highly demanded to produce single-crystal metal films with epitaxy in an appealing route. Traditional epitaxy on non-metal single-crystal substrates has difficulty in exfoliating away due to the formation of chemical bonds. Newly developed epitaxy on single-crystal graphene enables the easy exfoliation of epilayers but the annealing temperature must be high (typical 500-1,000 degrees C and out of the tolerant range of integrated circuit technology) due to the relative weak interfacial interactions. Here we demonstrate the facile production of 6-inch transferable high-quality Pd(111) films on single-crystal hybrid graphene/Cu(111) substrate with CMOS-compatible annealing temperature of 150 degrees C only. The interfacial interaction between Pd and hybrid graphene/Cu(111) substrate is strong enough to enable the low-temperature epitaxy of Pd(111) films and weak enough to facilitate the easy film release from substrate. The obtained Pd(111) films possess superior properties to polycrystalline ones with ~ 0.25 eV higher work function and almost half sheet resistance. This technique is proved to be applicable to other metals, such as Au and Ag. As the single-crystal graphene/Cu(111) substrates are obtained from industrial Cu foils and accessible in meter scale, our work will promote the massive applications of large-area high-quality metal films in the development of next-generation electronic and optoelectronic devices.