▎ 摘 要
Silver decorated graphene oxide (GO) was added in poly(3,4-ethylenedioxythiopphene): poly(styrene sulfonate) (PEDOT:PSS) matrix to fabricate composite films, aiming for an improved electrical conductivity. Silver particles were deposited on GO surfaces by reaction with Tollens' reagent. The composite films reinforced by silver decorated GO showed a sheet resistance of 744 Omega/sq. with 88.9% transparency, which outperformed PEDOT:PSS matrix and GO/PEDOT:PSS composite films. The deposited silver particles were consisted of elementary silver and positively charged silver. The GO surfaces were negatively charged. The distinction of positive domain and negative domain on silver decorated GO surfaces promoted the phase separation of conductive PEDOT molecules and insulting PSS molecules, which contributed to the increase of the electrical conductivity of the composite films. Moreover, the deposition of elementary silver introduced extra electron pathways in the composite films.