▎ 摘 要
Properly controlling the rheological properties of nanoparticle inks is crucial to their printability. Here, it is reported that colloidal gels containing a dynamic network of graphene oxide (GO) sheets can display unusual rheological properties after high-rate shearing. When mixed with polyaniline nanofiber dispersions, the GO network not only facilitates the gelation process but also serves as an effective energy-transmission network to allow fast structural recovery after the gel is deformed by high-rate shearing. This extraordinary fast recovery phenomenon has made it possible to use the conventional air-brush spray technique to print the gel with high-throughput and high fidelity on nonplanar flexible surfaces. The as-printed micro-supercapacitors exhibit an areal capacitance 4-6 times higher than traditionally spray-printed ones. This work highlights the hidden potential of 2D materials as functional yet highly efficient rheological enhancers to facilitate industrial processing of nanomaterial-based devices.