▎ 摘 要
The introduction of graphene into metamaterials allows for more flexible and convenient control of electromagnetic waves. In this paper, one simple plasmon-induced transparency (PIT) structure with tunability and polarization independence is investigated in the terahertz (THz) regime. The simulation results indicate that the transparent window can be manipulated in a wide range and even switched off by merely changing the Fermi energy of graphene. By continuously altering the resonance intensity of the dark resonator using the graphene, the PIT resonance can be actively manipulated. The behavior can be elucidated by the classical coupled two-particle model, which corresponds well to the simulation results. Owing to the fourfold symmetric structure, the proposed PIT device exhibits polarization-independent characteristics. This work provides design guidance for metal-graphene THz modulators.