• 文献标题:   Graphene based silicone thermal greases
  • 文献类型:   Article
  • 作  者:   YU W, XIE HQ, CHEN LF, ZHU ZG, ZHAO JC, ZHANG ZH
  • 作者关键词:   graphene, thermal grease, thermal conductivity, silicone
  • 出版物名称:   PHYSICS LETTERS A
  • ISSN:   0375-9601 EI 1873-2429
  • 通讯作者地址:   Shanghai Second Polytech Univ
  • 被引频次:   30
  • DOI:   10.1016/j.physleta.2013.10.017
  • 出版年:   2014

▎ 摘  要

Two kinds of silicone grease containing graphene nanoplatelets or reduced graphene oxide were prepared, and their thermophysical properties have been investigated. When the volume fraction was 1%, the reduced graphene oxide was the most effective additive to enhance the heat transfer properties of silicone, and graphene nanoplatelet was slightly inferior to the former. While when the concentration was enhanced, the viscosity of silicone grease containing reduced graphene oxide became very large due to its rich pore structure. Graphene nanoplatelet was efficient for the thermal conductivity enhancement of silicone grease, and it provided a thermal conductivity enhancement was up to 668% (loading of 4.25 vol.%). The experimental result is in excellent agreement with the recently developed theoretical model analyzing the thermal conductivity of isotropic composites containing randomly embedded GNPs, and it validates that graphene is an effective thermally conducting filler to let grease have high thermal conductivity with low filler content. (C) 2013 Elsevier B.V. All rights reserved.