• 文献标题:   Understanding the Influence of the Biomass-Derived Alcohols on the Activity and Stability of Pt Nanoparticles Supported on Graphene Nanoribbons
  • 文献类型:   Article
  • 作  者:   TELES R, ARENILLAS A, DA SILVA GC, FERNANDEZ PS, CARDOSO ESF, MAIA G, MARTINS CA
  • 作者关键词:   ptmodified nanoribbon, glycerol dlectrooxidation, ethanol electrooxidation, methanol electrooxidation, electrochemical stability
  • 出版物名称:   ELECTROCATALYSIS
  • ISSN:   1868-2529 EI 1868-5994
  • 通讯作者地址:   Fundacao Univ Fed Grande Dourados
  • 被引频次:   5
  • DOI:   10.1007/s12678-016-0349-3
  • 出版年:   2017

▎ 摘  要

We produced Pt/GNRs by a one-step synthesis procedure and evaluated their electroactivity and stability towards glycerol electrooxidation reaction (GEOR) for the first time. We compared the electrocatalytic performance of GEOR with methanol and ethanol electrooxidation on Pt/GNRs at identical experimental conditions. The activities and stabilities for the electrooxidation of these biomass-derived alcohols on Pt/ GNRs were compared to commercial Pt/C. The synthesis of the Pt/GNRs was confirmed by transmission electron microscopy, x-ray diffractometry, ultraviolet spectrophotometry, and Raman spectroscopy. We found that the activities of Pt/GNRs for these reactions are comparable to Pt/C, with improvement in terms of current density for methanol electrooxidation. Comparing potentiostatic measurements, we found that glycerol produces lower pseudo-stationary current densities than ethanol and methanol on both catalysts, with greatest values found for methanol electrooxidation on Pt/C. Otherwise, the GNRs remarkably enhance the stability of the catalyst for all the reactions, by increasing the stability of the current density during successive potential cycles, and by preventing the loss of electrochemically active surface area by avoiding carbon corrosion and Pt detachment. Moreover, we showed that the stability of the NPs depends on the biomass-derived alcohol used. The solution containing methanol reveals itself the most aggressive electrochemical environment to the catalyst, impacting in the decrease of surface area, while glycerol is less aggressive. Hence, the different products formed at the interface electrode/solution might lead to a different electrochemical environment, which plays an important role on the stability of the catalysts.