▎ 摘 要
TiN@rGO nanohybrids were successfully synthesized by a simple "urea glass" technique. Experimental results demonstrated that TiN nanocrystals, with an average particle size of 20 nm, were uniformly anchored onto highly reduced graphene nanosheets. The as-synthesized TiN@rGO nanohybrids showed a porous planar-like structure, which had a large surface area of 177 m(2) g(-1). More importantly, the as-prepared TiN@rGO hybrids showed enhanced catalytic effects on the dehydrogenation of MgH2. The dehydrogenation thermodynamics and kinetics of the MgH2-TiN@rGO composites were systematically investigated and some significant improvements were confirmed. It was found that the 10 wt% TiN@rGO doped MgH2 sample started to release hydrogen at about 167 degrees C, and roughly 6.0 wt% hydrogen was released within 18 min when isothermally heated to 300 degrees C. In contrast, the onset dehydrogenation temperature of the pure MgH2 sample was about 307 degrees C, and only 3.5 wt% hydrogen was released even after 120 min of heating under identical conditions. In addition, the catalytic mechanism of TiN@rGO on the dehydrogenation of MgH2 was discussed using the Johnson-Mehl-Avrami (JMA) model and X-ray diffraction equipment.