▎ 摘 要
Regenerative medicine is challenged by the need to conform to rigorous guidelines for establishing safe and effective development and translation of stem cell-based therapies. Counteracting widespread concerns regarding unproven cell therapies, stringent cell-based assays seek not only to avoid harm but also to enhance quality and efficacy. Potency indicates that the cells are functionally fit for purpose before they are administered to the patient. It is a paramount quantitative critical quality attribute serving as a decisive release criterion. Given a broad range of stem cell types and therapeutic contexts the potency assay often comprises one of the most demanding hurdles for release of a cell therapy medicinal product. With need for improved biomarker assessment and expedited measurement, recent advances in graphene-based biosensors suggest that they are poised to be valuable platforms for accelerating potency assay development. Among several potential advantages, they offer versatility for sensitive measurement of a broad range of potential biomarker types, cell biocompatibility for direct measurement, and small sample sufficiency, plus ease of use and point-of-care applicability.