• 文献标题:   Ultrafine Rh-Decorated 3D Porous Boron and Nitrogen Dual-Doped Graphene Architecture as an Efficient Electrocatalyst for Methanol Oxidation Reaction
  • 文献类型:   Article
  • 作  者:   YANG Y, HUANG HJ, YANG CZ, HE HY
  • 作者关键词:   rh nanoparticle, 3d graphene, dual doping, methanol oxidation, fuel cell
  • 出版物名称:   ACS APPLIED ENERGY MATERIALS
  • ISSN:   2574-0962
  • 通讯作者地址:  
  • 被引频次:   23
  • DOI:   10.1021/acsaem.0c02293 EA JAN 2021
  • 出版年:   2021

▎ 摘  要

The development and utilization of high-performance Pt-alternative anode materials with acceptable costs have recently become a hot issue in the fuel cell field. Here, we put forward a convenient and cost-effective scalable method to the bottom-up construction of an ultrafine Rh nanoparticle-decorated three-dimensional (3D) porous boron and nitrogen dual-doped graphene (Rh/BN-G) architecture via a convenient self-assembly process. Such a 3D porous hybrid structure can not only facilitate the transport of external electrolytes into the innermost catalyst surface but also create a large number of catalytically active sites in the catalytic system. Consequently, the newly developed 3D Rh/BN-G architecture manifests unusual electrocatalytic abilities toward methanol oxidation reaction, including a large electrochemically active surface area, high mass/specific activities, and superior long-term stability, all of which are much better than those of the reference Rh/carbon black, Rh/carbon nanotube, and Rh/undoped graphene catalysts.