▎ 摘 要
Mercury (Hg) is highly toxic but has been widely used for numerous domestic applications, including thermometers and batteries, for decades, which has led to fatal outcomes due to its accumulation in the human body. Although many types of mercury sensors have been developed to protect the users from Hg, few methodologies exist to analyze Hg2+ ions in low concentrations in real world samples. Herein, we describe the fabrication and characterization of liquid-ion gated field-effect transistor (FET)-type flexible graphene aptasensor with high sensitivity and selectivity for Hg. The field-induced responses from the graphene aptasensor had excellent sensing performance, and Hg2+ ions with very low concentration of 10 pM could be detected, which is 2-3 orders of magnitude more sensitive than previously reported mercury sensors using electrochemical systems. Moreover, the aptasensor showed a highly specific response to Hg2+ ions in mixed solutions. The flexible graphene aptasensor showed a very rapid response, providing a signal in less than 1 s when the Hg2+ ion concentration was altered. Specificity to Hg2+ ions was demonstrated in real world samples (in this case samples derived from mussels). The aptasensor was fabricated by transferring chemical vapor deposition (CVD)-grown graphene onto a transparent flexible substrate, and the structure displayed excellent mechanical durability and flexiblility. This graphene-based aptasensor has potential for detecting Hg exposure in human and in the environment.