▎ 摘 要
Bismuth vanadate (BiVO4) is a widely studied photocatalyst for the depollution of contaminated wastewater, production of hydrogen by water splitting, and organic synthesis. The photophysical properties of BiVO4 are sensitive to morphology and quantum confinement effects, and can exhibit enhanced photocatalytic performance in nanocomposites with graphene. Synthesis of hierarchical BiVO4 plates decorated by nanoparticles (h-BiVO4) in contact with reduced graphene oxide (RGO) is reported via a facile one-pot solution phase approach using ethanolamine and a polyethylene glycol stabilizer. The resulting h-BiVO4/RGO photocatalyst exhibited superior photoactivity for bisphenol A (BPA) degradation and hydrogen evolution under visible light irradiation compared to single component h-BiVO4 or a mu m-sized block-like BiVO4 morphology. Rates of BPA photocatalytic degradation and apparent quantum efficiency (AQE) decreased in the order h-BiVO4/RGO (4.5 x 10(-2) mmol.g(-1).min(-1); 15.1% AQE) > h-BiVO4 (3.5 x 10(-2) mmol.g(-1).min(-1); 11.7% AQE) > BiVO4 (1 x 10(-2) mmol.g(-1).min(-1); 3.4% AQE), representing a 4.5 fold enhancement for h-BiVO4/RGO versus BiVO4. Liquid phase photodegradation products included benzene-1,4-diol, cyclohexa-2,5-diene-1,4-dione and (2Z)-but-2-enedioic acid. The rate of photocatalytic hydrogen production under visible light was 11.5 mu mol.g(-1).h(-1) for h-BiVO4/RGO, similar to 383.3 times greater than for BiVO4 (0.03 mu mol.g(-1).h(-1)). The superior photocatalytic performance of h-BiVO4/RGO is largely attributed to its higher surface area, aided by enhanced visible light absorption and charge separation across the semiconductor-RGO interface, which together confer a higher density and lifetime of photoexcited charge carriers. (C) 2021 Elsevier Ltd. All rights reserved.