• 文献标题:   Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy
  • 文献类型:   Article
  • 作  者:   LUO XL, YANG GD, SCHUBERT DW
  • 作者关键词:   conductive polymer composite, graphene nanoplatelet, carbon nanotube, synergistic effect, anisotropy
  • 出版物名称:   ADVANCED COMPOSITES HYBRID MATERIALS
  • ISSN:   2522-0128 EI 2522-0136
  • 通讯作者地址:  
  • 被引频次:   42
  • DOI:   10.1007/s42114-021-00332-y EA SEP 2021
  • 出版年:   2022

▎ 摘  要

Pristine carbon nanotubes (CNTs) and functionalized carbon nanotubes (f-CNTs) were introduced into conductive poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composites to achieve a synergistic effect in the enhancement of the conductivity and the reduction in the percolation threshold by forming a 3-Dimensional(3-D) hybrid structure. Both the in-plane and perpendicular electrical properties were investigated. The synergies of hybrid fillers in the in-plane direction were more dependent on the total filler loading, while those in the perpendicular direction were significantly influenced by the GNP/CNT or GNP/f-CNT ratios. Typically, a schematic diagram of the evolution of the 3-D conductive pathways of PMMA/GNP/f-CNT composite at different GNP/f-CNT ratios was presented to explain this phenomenon. Moreover, tunable conductivity anisotropy (defined as the ratio of in-plane conductivity to perpendicular conductivity) ranging from 0.01 to 1000 was achieved, simply by constructing different conductive structures at various filler loadings or ratios in composites.