• 文献标题:   A First-Principles Study of the Role of Quaternary-N Doping on the Oxygen Reduction Reaction Activity and Selectivity of Graphene Edge Sites
  • 文献类型:   Article
  • 作  者:   BAO XG, NIE XW, VON DEAK D, BIDDINGER E, LUO WJ, ASTHAGIRI A, OZKAN U, HADAD C
  • 作者关键词:   oxygen reduction of graphene, oxygen reduction reaction, o2 chemisorption, ngraphene, edge site, density functional theory
  • 出版物名称:   TOPICS IN CATALYSIS
  • ISSN:   1022-5528 EI 1572-9028
  • 通讯作者地址:   Ohio State Univ
  • 被引频次:   41
  • DOI:   10.1007/s11244-013-0097-z
  • 出版年:   2013

▎ 摘  要

Density functional theory (DFT) was used to investigate O-2 chemisorption on the edge sites of graphene doped with quaternary nitrogen (N-graphene). The location of the doped quaternary N within the graphene cluster was systematically varied to determine the effect of interior versus edge doping on the reactivity of the edge graphene sites. Model 1b, where a quaternary-N atom is at the zigzag edge of the graphene cluster, is found to be the most favored structure and strongly adsorbs O-2 molecule via a "two feet" geometry. For this most stable O-2 binding configuration, the potential-dependent free energy of reaction for the subsequent oxygen reduction reaction (ORR) steps was evaluated. The favored four electron-proton transfer mechanism passes through a dissociative O*+OH* state instead of an OOH* intermediate, followed by a series of reduction steps to produce water. At the equilibrium potential for ORR of 1.23 V-NHE, the protonation of O* and OH* both show uphill steps, but the production of O* is facile with a small overpotential. An applied potential of -0.15 V-NHE is required to facilitate the protonation of OH* to water, a larger overpotential than observed experimentally. While solvent effects may reduce this overpotential, our results suggest that the edge of the N-graphene is very active towards activation of O-2 and production of O* and OH* but because of strong binding of the oxygen atom, the subsequent steps of the ORR reaction will be hindered. Mechanisms that have OH* formed at the edge site and then move to adjacent sites for more facile protonation will have to be explored in the future.