▎ 摘 要
Lithium-sulfur (Li-S) batteries are promising electrochemical energy storage systems because of their high theoretical energy density, natural abundance, and environmental benignity. However, several problems such as the insulating nature of sulfur, high solubility of polysulfides, large volume variation of the sulfur cathode, and safety concerns regarding the lithium anode hinder the commercialization of Li-S batteries. Graphene-based materials, with advantages such as high conductivity and good flexibility, have shown effectiveness in realizing Li-S batteries with high energy density and high stability. These materials can be used as the cathode matrix, separator coating layer, and anode protection layer. In this review, the recent progress of graphene-based materials used in Li-S batteries, including graphene, functionalized graphene, heteroatom-doped graphene, and graphene-based composites, has been summarized. And perspectives regarding the development trend of graphene-based materials for Li-S batteries have been discussed.