▎ 摘 要
Graphene-based energy storage devices, such as supercapacitors and lithium ion batteries have triggered substantial research interests due to the remarkable physical and chemical properties. However, the restacking due to intensive p-p interactions dramatically decreases the specific surface area, leading to the poor energy storage performance. In addition, the electrical conductivity of commonly reduced graphene oxide (G) is several orders of magnitude lower than pristine graphene due to the incomplete reduction and the presence of numerous defects. Here, we report a doubl enhanced strategy to improve the energy storage performance of G through pristine CNTs directly dispersed by GO and subsequent multicomponent surface self-assembly coating of ordered mesoporous carbon. The resulted graphene-CNT ordered mesoporous carbon ternary hybrids (GCMCs) possess an ordered, interconnected mesostructure, a high specific surface area of 1411 m(2)g(-1), large mesopores of 4.3 nm, and good conductivity. With their tailored architecture, the GCMCs-based supercapacitor shows high specific capacitance (2.4-16.5 times higher than G) and excellent cycle along with 100% capacitance after 1000 cycles. Additionally, lithium ion battery anodes made of these GCMCs have exhibited a high reversible capacity of 903 mAhg(-1) at 0.1 Ag-1 after 100 cycles, which is 3.9 times higher than that of G.