• 文献标题:   Ultralight covalent organic framework/graphene aerogels with hierarchical porosity
  • 文献类型:   Article
  • 作  者:   LI CX, YANG J, PACHFULE P, LI S, YE MY, SCHMIDT J, THOMAS A
  • 作者关键词:  
  • 出版物名称:   NATURE COMMUNICATIONS
  • ISSN:   2041-1723
  • 通讯作者地址:   Tech Univ Berlin
  • 被引频次:   0
  • DOI:   10.1038/s41467-020-18427-3
  • 出版年:   2020

▎ 摘  要

The fabrication of macroscopic objects from covalent organic frameworks (COFs) is challenging but of great significance to fully exploit their chemical functionality and porosity. Herein, COF/reduced graphene oxide (rGO) aerogels synthesized by a hydrothermal approach are presented. The COFs grow in situ along the surface of the 2D graphene sheets, which are stacked in a 3D fashion, forming an ultralight aerogel with a hierarchical porous structure after freeze-drying, which can be compressed and expanded several times without breaking. The COF/rGO aerogels show excellent absorption capacity (uptake of >200g organic solvent/g aerogel), which can be used for removal of various organic liquids from water. Moreover, as active material of supercapacitor devices, the aerogel delivers a high capacitance of 269Fg(-1) at 0.5Ag(-1) and cycling stability over 5000 cycles. Macroscopic architectures of covalent organic frameworks (COF) allow to fully exploit their chemical functionality and porosity but achieving three-dimensional hierarchical porous COF architectures remains challenging. Here, the authors present a COF/reduced graphene oxide aerogel which is synthesized by growing COF during a hydrothermal process along the surface of graphene sheets.