▎ 摘 要
A highly active, durable, and low-cost hydrogen evolution reaction (HER) catalyst is desirable for energy storage through water splitting but its fabrication presents great challenges. Herein, mediated by dynamically self-assembled graphene quantum dots (GQDs), small, uniform, high-density, and well-dispersed CoP nanoparticles were grown in situ on pristine graphene for the first time. This hybrid nanostructure was then employed as HER electrocatalyst, showing an onset potential of 7 mV, an overpotential of 91.3 mV to achieve 10 mAcm(-2), a Tafel slope of 42.6 mVdec(-1), and an exchange current density of 0.1225 mAcm(-2), all of which compare favorably to those of most reported non-noble-metal catalysts. The developed catalyst also exhibits excellent durability with negligible current loss after 2000 cyclic voltammetry cycles (+0.01 to -0.17 V vs. RHE) or 34h of chronoamperometric measurement at an overpotential of 91.3 mV. This work not only develops a new strategy for the fabrication of high- performance and inexpensive electrocatalysts for HER but also provides scientific insight into the mechanism of the dynamically self-assembled GQDsmediated synthesis process.