• 文献标题:   Finite element analysis of titanium alloy-graphene based mandible plate
  • 文献类型:   Article
  • 作  者:   JINDAL P, WORCESTER F, WALIA K, GUPTA A, BREEDON P
  • 作者关键词:   fea, fem, gnp, maxillofacial, endurance, stres
  • 出版物名称:   COMPUTER METHODS IN BIOMECHANICS BIOMEDICAL ENGINEERING
  • ISSN:   1025-5842 EI 1476-8259
  • 通讯作者地址:   Nottingham Trent Univ
  • 被引频次:   0
  • DOI:   10.1080/10255842.2018.1555244
  • 出版年:   2019

▎ 摘  要

Titanium alloy based maxillofacial plates and implants are widely used in fracture treatment and reconstructions. Filler materials Graphene Nanoplatlets(GNPs) were used in a Titanium alloy maxillofacial plate and a Finite Element Model (FEM) was designed to reconstruct a fractured human mandible. Both 50N and 500N bite forces were applied on the mandible and stress distribution using Von mises failure theory across the plate sections was analyzed. A pure plate was critically stressed at a section near the mandible fracture region for a Von mises stress of nearly 27.5GPa while this stress reduced by nearly 10-22% with the presence of minor composition of GNPs in the plate. GNPs orientation in parallel (21.1 GPa) to the plate axis were more effective in comparison to other orientations(90 degrees, 45 degrees and 135 degrees) and the location variation of these GNPs along the plate had no significant effect on the stress distribution. The fatigue analyses showed that, under these stresses and forces the plate with GNP was able to endure for nearly 7000 days, while the pure Titanium plate could fail by fatigue in approximately 70 days. Hence, presence of minor compositions of GNPs could enhance endurance life of the Titanium plate by reducing stress concentrations at critical sections of the plate.