▎ 摘 要
The intrinsic properties of initially p-type doped graphene (grown by chemical vapor deposition (CVD)) can be recovered by buffered oxide etch (BOE) treatment, and the dominant factor governing p-type doping is identified as the H2O/O-2 redox system. Semi-ionic C-F bonding prevents the reaction between the products of the H2O/O-2 redox system and graphene. BOE-treated graphene field effect transistors (FETs) subsequently exposed to air, became p-type doped due to recovery of the H2O/O-2 redox system. In comparison, poly(methyl methacrylate) (PMMA)-coated graphene FETs had improved stability for maintaining the intrinsic graphene electronic properties.