▎ 摘 要
Graphene, as the fundamental 2D carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Its sudden discovery in 2004 led to an explosion of interest in the study of graphene with respect to its unique physical, chemical, and mechanical properties, opening up a new research area for materials science and condensed-matter physics, and aiming for wide-ranging and diversified technological applications. In this critical review, we will describe recent advances in the development of graphene-based materials from the standpoint of electrochemistry. To begin with, electron transfer properties of graphene will be discussed, involving its unusual electronic structure, extraordinary electronic properties and fascinating electron transport. The next major section deals with the exciting progress related to graphene-based materials in electrochemistry since 2004, including electrochemical sensing, electrochemiluminescence, electrocatalysis, electrochemical energy conversion and FET devices. Finally, prospects and further developments in this exciting field of graphene-based materials are also suggested (224 references).