▎ 摘 要
A novel mesoporous MoO2 composite supported on graphene oxide (m-MoO2/GO) has been designed and applied as an efficient epoxidation catalyst. The m-MoO2/GO composite was characterised by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmet-Teller surface area analysis, field emission scanning electron microscopy, and transmission electron microscopy. Compared with pure mesoporous MoO2 (m-MoO2) and amorphous MoO2-graphene oxide (a-MoO2/GO), m-MoO2/GO exhibits the best catalytic activity. The conversion and selectivity for cyclooctene are both over 99% in 6h. Remarkably, the mesoporous structure in m-MoO2/GO which derives from SiO2 nanospheres endows the catalyst better catalytic performance for long chain olefins: the conversion of methyl oleate can be as high as 82%. Such a robust catalyst can be easily recycled and reused five times without significant loss of catalytic activity. This novel catalyst is promising in the synthesis of epoxides with a long carbon chain or large ring size.