▎ 摘 要
We propose and numerically demonstrate a compact terahertz wave switch which is composed of two graphene waveguides and three graphene ring resonators. Changing the bias voltage of the Fermi level in the center graphene ring, the resonant mode can be tuned when the plasmon waves in the waveguides and rings are coupled. We theoretically explain their mechanisms as being due to bias voltage change induced carrier density of graphene modification and the coupling coefficients of graphene plasmon effect after carrier density change, respectively. The mechanism of such a terahertz wave switch is further theoretically analyzed and numerically investigated with the aid of the finite element method. With an appropriate design, the proposed device offers the opportunity to 'tune' the terahertz wave ON-OFF with an ultra-fast, high extinction ratio and compact size. This structure has the potential applications in terahertz wave integrated circuits.