• 文献标题:   Synergistic Effect of MIL-101/Reduced Graphene Oxide Nanocomposites on High-Pressure Ammonia Uptake
  • 文献类型:   Article
  • 作  者:   BAE C, JEONG G, PARK S, KIM Y, GU M, KIM D, KIM J
  • 作者关键词:  
  • 出版物名称:   ACS OMEGA
  • ISSN:   2470-1343
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1021/acsomega.2c00741
  • 出版年:   2022

▎ 摘  要

Ammonia has emerged as a potential working fluid in adsorption heat pumps (AHPs) for clean energy conversion. It would be necessary to develop an efficient adsorbent with high-density ammonia uptake under high gas pressures in the low-temperature range for waste heat. Herein, a porous nanocomposite with MIL-101(Cr)-NH2 (MIL-A) and reduced graphene oxide (rGO) was developed to enhance the ammonia adsorption capacity over high ammonia pressures (3-5 bar) and low working temperatures (20-40 degrees C). A one-pot hydrothermal reaction could form a two-dimensional sheet-like nanocomposite where MIL-A nanoparticles were well deposited on the surface of rGO. The MIL-A nanoparticles were shown to grow on the rGO surface through chemical bonding between chromium metal centers in MIL-A and oxygen species in rGO. We demonstrated that the nanocomposite with 2% GO showed higher ammonia uptake capacity at 5 bar compared with pure MIL-A and rGO. Our strategy to incorporate rGO with MIL-A nanoparticles would further be generalizable to other metal-organic frameworks for improving the ammonia adsorption capacity in AHPs.