▎ 摘 要
Multiscale simulation study results of multilayer structures consisting of graphene sheets with embedded Pt nanoparticles is reported. Density functional theory is used to understand the energetics of Pt-graphene interfaces and provide reference data for the parameterization of a Pt-graphene interaction potential. Molecular dynamics simulations then provide the conformation and energetics of graphene sheets with embedded Pt nanoparticles of varying density, form, and size. These results are interpreted using a continuum mechanical model of sheet deformation, and serve to parameterize a meso-scale Monte Carlo model to investigate the question under which conditions the free volume around the Pt nanoparticles forms a percolating cluster, such that the structures can be used in catalytic applications. This article is concluded with a discussion of potential applications of such multilayer structures.