▎ 摘 要
The dispersion of cellulose nanocrystal (CNC) in starch matrix limited its application. In this study, CNC modified by silane coupling agent before graphene oxide (GO) self-assembled on the surface of modified CNC, then CNCGO as a filler was used to prepare starch-based nanocomposite films (CS/CNC-GO). The structure of CNC-GO and CS/CNC-GO films and the properties of CS/CNC-GO films were studied by FT-IR, Raman, SEM, surface potential, UV-Vis, moisture absorption and tensile tests. The results showed that GO was successfully self-assembled on the surface of CNC modified by silane coupling agent. CNC-GO was superior to CNC in reinforcing the strength of starch film, improving the transmittance of starch film and decreasing moisture rate of starch film. Tensile strength, elongation at break and transmittance of CS/CNC-GO film with 5 wt% CNC-GO reached maximum, which was 53.96 MPa, 3.72% and 38.76%, respectively. Moisture rate of CS/CNC-GO film with 3 wt% CNC-GO reached minimum that was 12.13%. These were assigned to the more uniform dispersion of CNC-GO in the starch matrix and the stronger interfacial interaction between starch and CNC-GO.