▎ 摘 要
The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy (MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 degrees C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 degrees C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 x 10 mm(2) up to 3-in. in diameter. The authors have used a carbon sublimation source to grow graphene on sapphire at substrate temperatures between 1000 and 1650 degrees C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moire pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moire pattern to the commensurate growth of crystalline graphene on h-BN. (C) 2016 Author(s).