▎ 摘 要
The potential adverse effects of graphene quantum dots (GQDs) have increasingly attracted attention. Our present study revealed the genotoxic responses of rat alveolar macrophages (NR8383) to aminated graphene QDs (AG-QDs) and detected the cellular recovery after removing AG-QDs. Global gene expression analysis from RNA-sequencing showed that AG-QDs (100 mu g/mL) caused significant alterations in expression of 2898 genes after exposure for 24 h. Among these, 1335 and 1563 genes were up-regulated and down-regulated, respectively. Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, we found that most of the down-regulated genes were responsive to "cell cycle", which correlated well with the cell cycle arrest data that AG-QDs triggered cell cycle arrest at S (synthesis) and G2/M (second gap/mitosis) phase. The percentages of cells in S and G2/M phase were increased by 4.5%, and 29.0%, respectively. In addition, the up-regulated genes related with "endocytosis" and "phagocytosis" were identified, which could regulate the internalization of AG-QDs by endocytosis and phagocytosis. After removing exposed AG-QDs and re-incubating the cells in fresh medium, the arrest of S and G2/M phase in NR8383 cells was reduced, and the cell cycle gradually recovered. This cellular recovery could be attributed to the cellular excretion of AG-QDs and the up-regulation of the DNA-repair-related genes (Rad51, Brca2, and Atm). The current work provides insights into the potential hazards of AG-QDs in transcriptional level and presented the long-term effects of AG-QDs on organisms in environment. (C) 2019 Elsevier B.V. All rights reserved.