▎ 摘 要
Here, we fabricated a pyridine-copolymerized g-C3N4 by a novel and cost-effective approach based on Schiff-base chemistry. Thus produced g-C3N4 showed significantly enhanced and stable visible-light photocatalytic H-2 evolution performance compared to pristine g-C3N4 obtained from urea. Subsequently, we constructed a composite of pyridine-modified g-C3N4 and N-doped reduced graphene oxide (N-rGO) by facile one-pot calcination to elevate the photocatalytic efficiency further. The peak H-2 production rate achieved using this composite was 304 mu mol.h(-1), about 11.7 and 3.1 times as those obtained using pure g-C3N4 and pyridine-modified g-C3N4, respectively. In addition to enhanced visible light absorbance and enlarged surface area, the promoted separation, transfer, and surface reactivity of photogenerated charge carriers by the pyridine ring as intramolecular electron acceptor and N-rGO as "electron-transfer activation region" are considered responsible for the remarkably enhanced photocatalytic activity.