• 文献标题:   3D graphene supported MoO2 for high performance binder-free lithium ion battery
  • 文献类型:   Article
  • 作  者:   HUANG ZX, WANG Y, ZHU YG, SHI YM, WONG JI, YANG HY
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Singapore Univ Technol Design
  • 被引频次:   60
  • DOI:   10.1039/c4nr01744g
  • 出版年:   2014

▎ 摘  要

In this work, we report the synthesis of MoO2 nanoparticles grown on three dimensional graphene (3DG) via the reduction of alpha-MoO3 nanobelts through a facile chemical vapor deposition (CVD) approach under argon protection gas environment. In this synthesis approach, the presence of hydrophobic 3DG promoted the Volmer-Weber growth of MoO2 nanoparticles (30-60 nm). The as-prepared MoO2-3DG nanocomposite was directly used as a binder-free anode electrode for lithium ion batteries (LIBs) without additives and exhibited excellent electrochemical performance. It delivered high reversible capacities of 975.4 mA h g(-1) and 537.3 mA h g(-1) at the current densities of 50 and 1000 mA g(-1), respectively. Moreover, the electrode also showed an increased capacity from 763.7 mA h g(-1) to 986.9 mA h g(-1) after 150 discharge and charge cycles at a current density of 200 mA g(-1). The enhanced electrochemical performance of MoO2-3DG nanocomposite electrode may be attributed to the synergistic effects of MoO2 nanoparticles and 3DG layers. This facile CVD synthesis process presents a feasible route for large-scale production of high performance, environmentally friendly electrode. In addition, this process also has the potential of being utilized in other materials for energy storage devices application.