▎ 摘 要
The state-of-the-art graphene Hall elements and integrated circuits are reviewed. By optimizing the growth and transfer of graphene and the micro-fabrication process of Hall sensor, graphene Hall elements and integrated circuits outperform conventional Hall sensors in many aspects. Graphene Hall elements exhibit better sensitivities, resolutions, linearities and temperature stabilities than commercialized Hall elements. Through developing a set of passivation processes, the stabilities of graphene Hall elements are improved. Besides, the flexible magnetic sensing and multifunctional detection applications based on graphene are demonstrated. In addition, graphene/silicon hybrid Hall integrated circuits are realized. By developing a set of low temperature processes (below 180 degrees C), graphene Hall elements are monolithically integrated onto the passivation layer of silicon complementary metal oxide semiconductor chip. This work demonstrates that graphene possesses significant performance advantages in Hall magnetic sensing and potentially practical applications.